Lecture Objectives

- Introduce the unique ultrasonic technique associated with echocardiography
- Present the basic ultrasonic “views” of the heart
- Discuss the most useful indications of cardiac ultrasound as performed by the EM physician with limited training
Introduction
Introduction

- ED Echocardiographic exam
 - Goal-directed assessment
 - Adjunct to general clinical evaluation
Introduction

- Common applications
 - Pericardial effusion
 - Unexplained hypotension
 - Cardiac Arrest
 - Cardiac procedures
 - Cardiac trauma
Introduction

- Applications not commonly performed by Emergency physicians with Transthoracic Echo
 - Aortic disease
 - Endocarditis
 - Valvular abnormalities
 - Cardiac masses
Technical Considerations
Technical Considerations

- Two types of grey-scale images
 - M-mode
 - B-mode
Technical Considerations

- M-mode
 - One dimension wave across moving tissue
 - “ice pick” view
 - Permits precise measurements
 - Heart Rate
 - Walls
 - Valves
Technical Considerations

- B-mode, real-time
 - “pie” image
 - Anatomic representation
 - Wall-motion abnormalities
 - Pericardial disease
 - Cardiac masses
 - Many others
Technical Considerations

- Doppler echocardiography
 - Uses changing frequencies of moving blood to calculate blood-flow velocity
 - Provides noninvasive determination
 Stroke volume
 Cardiac output
 Pressure gradients across valves
Technical Considerations

- **Probe selection**
 - Smaller “footprints”
 - Allows for visualization between ribs
 - 2.5 MHz for above-average body size
 - 3.5 MHz for normal-sized adults
 - 5.0 MHz for children
Technical Considerations

- Orientation
 - Cardiology orientation is opposite that used for standard ultrasound
 - Screen oriented to left
 - Probe marker points to patient’s left
 - Therefore, in transverse plane, the screen will be oriented similar to standard ultrasound

- Trauma/abdominal orientation with screen marker and probe oriented to the patient right
 - Images will look the same; you will be holding the probe 180 degrees from the cardiology rotation
 - We will show both orientations. You decide how you want to perform
Technical Considerations

- Cardiac Orientation

 Screen marker pointed to left

 Probe marker pointed to patient’s left

 right

 anterior

 posterior

 left
Technical Considerations

- Abdominal/Trauma Orientation
 - Screen marker to the patient’s right
 - Probe oriented to the patient’s right
Technical Considerations

- Patient/Sonographer positioning
 - Patient is *usually* supine
 - May be placed in left lateral decubitus
 - Sonographer *may be* at patient’s left side
 - Transducer *may be* held in left hand
Technical Considerations

- “Standard” echocardiographic study
 - Subcostal
 - Parasternal long axis
 - Parasternal short axis
 - Apical four-chamber
Technical Considerations

“In the emergency department, where constraints of time and patient compliance may abbreviate the study, there is no such thing as a standard echocardiogram.”

Eric Snoey

Ultrasound in Emergency and Ambulatory Medicine
Primary Echocardiographic Axes

Long Axis

Short Axis
Primary Echocardiographic Axes

Coronal Axis
Subcostal Four-Chamber View

- Most consistently available view
- Away from neck and chest
- Patient may be supine or sitting
- Transducer in subxiphoid area very parallel to chest
- Probe aimed at left shoulder
 - May need to point to head to use left lobe of liver
- Marker
 - Cardiology Orientation = patient’s left
 - Abd/Trauma Orientation = patient’s right
Subcostal Four-Chamber View

- Frequently yields information regarding:
 - Cardiac function
 - Chamber size
 - Presence of pericardial fluid
 - Inferior vena cava
 - Interventricular septum
Subcostal Four-Chamber View
Subcostal Four-Chamber View

Emergency Cardiac Ultrasound - 7
Subcostal Four-Chamber View

Liver

RV

LV

RA

LA

anteriort

right

posterior

left

Emergency Cardiac Ultrasound - 7
Subcostal Four-Chamber View
Parasternal Long-Axis View

• Probe in the left second or third intercostal space
• Point the probe to
 • Cardiology Orientation = the right shoulder
 • Abd/Trauma orient = left hip
Parasternal Long-Axis View
Parasternal Long-Axis View
Parasternal Long-Axis View

Mitral Valve

Aortic Valve

Caudal or Apex

Cephalad or Base

posterior

anterior

Emergency Cardiac Ultrasound - 7
Parasternal Long-Axis View
Parasternal Long-Axis View
Parasternal Short-Axis View

- Same probe position as PSLA
- Point probe towards
 - Cardiology Orientation = left shoulder
 - Abd/Trauma orientation = right hip
Parasternal Short-Axis View
Parasternal Short-Axis View
Parasternal Short-Axis View

Mitral Valve

Anterior

Right

Posterior

Left

RV

LV

Emergency Cardiac Ultrasound - 7
Parasternal Short-Axis View
Parasternal Short-Axis View
Parasternal Short-Axis View

- RV (right ventricle)
- LV (left ventricle)
- Anterior
- Right
- Posterior
- Left
Parasternal Short-Axis View
Parasternal Short-Axis View
Parasternal Short-Axis View

Emergency Cardiac Ultrasound - 7
Parasternal Short-Axis View
Apical Four-Chamber View

- Probe at the PMI
- Direct probe at right shoulder
- Probe marker to
 - Cardiology orientation = the patient’s left axilla
 - Abd/Trauma orientation = right hip
Apical Four-Chamber View
Apical Four-Chamber View
Apical Four-Chamber View

- Tricuspid Valve
- Caudal or Apex
- Mitral Valve
- Cephalad or Base
- Right
- Left

Emergency Cardiac Ultrasound - 7
Apical Four-Chamber View
Technical Considerations

- Difficulty performing cardiac ultrasound
 - Obesity
 - Emphysema
 - Mechanical ventilation
 - Lack of patient cooperation
 - Presence of injuries to the chest wall
 - Ongoing procedures
Clinical Applications

Pericardial Disease
Pericardial Disease

- Often presents with limited symptomology
- Beck’s triad are late findings
- Ultrasound is the test of choice
Pericardial Effusion

- US appearance = Anechoic collection between the parietal and visceral pericardium
- Separation of usually opposed pericardial layers
- Ant and posterior pericardium must be visualized
- Echogenic effusions
 - Blood
 - Malignancy
 - Infection
Differential of Pericardial effusion

- Descending aorta
 - In PSL – circular structure with echogenic wall in sulcus between Left atrium and left ventricle
Differential of pericardial fluid - Peritoneal fluid

- In Subcostal view, subhepatic fluid may be seen next to diaphragm and pericardium
- Other potential false positives
 - Pericardial cysts
 - Aneurysmal disease of any cardiac chamber or aorta
 - Dilated Esophagus
Clinical Applications

Unexplained Hypotension
Unexplained Hypotension

- Echocardiography can provide assessment of:
 - Evidence of etiology of hypotension
 - Cardiac Function
 - Volume status
Cardiac Tamponade

- Pericardial Effusion (required)
- Signs of Tamponade
 - IVC and Hepatic veins dilated with no respiratory variation (elevated R sided Heart pressures)
 - Right ventricular diastolic collapse
 - Right atrial systolic collapse
 - D shaped septum flattening towards LV
 - Hyperdyamic LV
Cardiac Tamponade
Unexplained Hypotension

- Cardiogenic shock due to LV failure

- Emergency Physicians can accurately determine gross LV function in hypotensive patients

- US appearance
 - Dilated left ventricle
 - Hypocontractile
 - Lack of contraction
 - Lack of thickening towards the center of chamber
 - Differential
 - Cardiac ischemia
 - Valvular failure
 - Inotropic failure
 - Pacer failure
 - Drug related toxicity
Unexplained Hypotension

Cardiogenic shock due to LV failure
Unexplained Hypotension

- Volume-depleted heart
 - Small size
 - Near-complete ventricular emptying
 - Flat inferior vena cava
 - Exaggerated respiratory variation
- Differential includes
 - Volume depletion
 - Sepsis
 - Anaphylaxis
Unexplained Hypotension

- Right Ventricular Dilation
 - Dilated right ventricle (>0.5 diam of LV)
 - RV hypokinesis
 - Normal LV function
 - Enlarged, “stiff” IVC

- Differential
 - Massive Pulmonary Embolus
 - Echo does not play a prominent role in stable without right ventricular dilation.
 - Right Ventricular Infarction
 - Cor Pulmonale
 - Pulmonary Hypertension of other etiology
RV dilation
Unexplained Hypotension

- Other causes are difficult for the sonographer with limited training and equipment to identify but clues on grey-scale 2D echo include:

 - Acute valvular problems
 - Dilated chambers
 - Floating leaflets or chordina
 - Outflow tract obstruction
 - Septal hypertrophy or masses at the inflow, outflow, or valve
 - Septal rupture
 - Dilated Right ventricle
 - Cardiac rupture
 - Pericardial effusion
Clinical Applications

Arrhythmias
Arrhythmias

- Identification of PEA
- Identification of asystole
- Identification of ventricular fibrillation
- Documentation of capture during cardiac pacing
PEA

• Goal: differentiate
 • “pseudo-PEA” = true ventricular contraction
 • true PEA = no mechanical activity but electrical activity

• Pseudo-PEA is essentially an extreme hypotensive state
• Differential is same as Hypotension
 • Tamponade
 • Volume depletion
 • LV dysfunction
 • RV dysfunction
• US prognostic?
 • Blaivas et al
 • Salen et al
Asystole

- Lack of ventricular contractions
- US appearance
 - True “cardiac standstill”
 - Pooling of blood in cardiac chambers
 - Agonal valvular contractions
- US may be prognostic
 - Blaivas et al
 - Salen et al
Ventricular and atrial arrhythmias

- Ventricular fibrillation
 - Usually a ECG diagnosis
 - Asystole versus ventricular fibrillation can be identified
- Atrial arrhythmias
 - Can be helpful as adjunct
Torsades as seen on US
Clinical Applications

Penetrating Cardiac Trauma
Penetrating Cardiac Trauma

- Physician’s ability to assess is poor
- Beck’s Triad
 - Dependent on patient cardiovascular status
 - Late findings
Penetrating Cardiac Trauma

Emergency Department Echocardiography Improves Outcome in Penetrating Cardiac Injury

“Since the introduction of immediate ED two-dimensional echocardiography, the time to diagnosis of penetrating cardiac injury has decreased and both the survival rate and neurologic outcome of survivors has improved.”

Emergency Cardiac Ultrasound - 7
Penetrating Cardiac Trauma

- Factors of pericardial effusion that cause cardiac compression
 - Size of the effusion
 - Rate of formation
 - Consider repeating exam with repeat CXR in 6hrs
Penetrating Cardiac Trauma

- Echocardiographic signs of rising intrapericardial pressure
 - Collapse of RV free walls
 - Dilated IVC and hepatic veins
Cardiac Tamponade s
Summary

- Anatomy and orientation are confusing
- Primary applications for ED
 - Pericardial effusion
 - Hypotension
 - Cardiac arrest
 - Cardiac Trauma
Questions?